Logistic Map Neural Models
نویسندگان
چکیده
This paper examines the ability of neural based structures to model the logistic equation. This modelling includes not only the generation of the logistic curve, but also the time series that are generated by the logistic neural model. This study concerns all main regions of the logistic equation: the region of convergence for parameter values less than 3, the periodic region for parameter values in the interval [3, 3.57], and the chaotic region for values in the interval [3.57, 4]. For each region, the fixed points of the logistic map are calculated and compared to the corresponding theoretical points, followed by an analysis of the distribution of the absolute mean error between the theoretical and the experimental curves. Finally, the Lyapunov exponent and the fractal dimensions for both the theoretical and the neural based attractor are estimated.
منابع مشابه
The Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan
One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...
متن کاملPresentation of new ensemble method of Bayesian and logistic regression models in landslide susceptibility assessment in the Khalkhal Township
The aim of current research is to assess of landslide susceptibility in the Khalkhal Township, southern Ardabil using an ensemble and new method namely Bayesian and logistic regression (BT-LR) models. At first, landslide inventory map was prepared and then effective factors on landslide occurrence were identified. These factors are slope degree, plan curvature, slope aspect, elevation, landuse,...
متن کاملComparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings
Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...
متن کاملComparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models
Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کامل